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Achieve state-of-the-art
performance with less data than

usually on multiple tasks by .\
transfer learning

Hampus Londdgéard @ AFRY
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Learning

De-mystifying something a lot
are afraid of

lllustration by Freepik Stories



https://stories.freepik.com/technology

What Is Possible?
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How 1is this
possible?




It’s all
statistics

Complex words, simple idea

m = 0.0371

¢ = 0.0007




It’s all
statistics

Complex words, simple idea




Example: Rectified Linear Unit (ReLU)




ReLU(z) £ max(0, z)
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So, what
makes what?
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More about
Neural
Networks
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Random initiation
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Actually remembering things

lllustration by Freepik Stories



https://stories.freepik.com/technology

Reasons to use
Transfer Learning

e Low-resource tasks
e Improve performance
e Reduce training-time
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Practical
end-result



Error %

100 200 500 1000 2000 500010000 25000 100000
# of training examples

In practice, transfer learning has often been shown to achieve similar
performance compared to a non-pretrained model with 10x fewer
examples (Howard and Ruder, 2018).
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Major Themes
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Language Models
Pre-training
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Words to
words—-in-context

Context matters!
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Words to
words—-in-context

Context matters!

| don’t think this is a very good movie




Language Model
(LM) pretraining

Understand a language
Contextual Representations

Versatile
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(LM) pretraining
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Shallow to Deep

Quickly models have grown deeper.

2016: 2-3 layers




Shallow to Deep

Quickly models have grown deeper.

2016: 2-3 layers
2019: ~60 layers (24 Transformers Blocks, BERT/GPT2) A4 =\




Pretraining vs
Target Task

Pre-training similar to target task

Sentence Representation is not useful for word-level
predictions, and v.v.




How do we use
“Transfer
Learning”?




Feature Fine-Tuning
Extraction



Feature Extraction
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How to fine-tune?




Fine-tune progressively in time
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Fine-tune progressively in time
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Fine-tune: progressively in intensity
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Fine-tune: progressively in intensity

Ir=0.001
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Fine-tune: progressively in intensity

¥

@la @

\__’ Ir=0.0001 Ir=0.001

ssssssssssss




Fine-tune: progressively vs. a pretrained model
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Trade-offs: Working with
pre-trained models

Feature Fine-tuning
Extraction

- Slower - Better for dissimilar tasks
- Space-efficient



Getting more
signal



Sequential
adaptation

A related task with more data?

1. Fine-tune on related task
2. Fine-tune on target task

Improves if limited data (Phang et al.,

2018)
Improves sample efficiency on target

task (Yogatama et al., 2019)



https://arxiv.org/abs/1811.01088v2
https://arxiv.org/abs/1811.01088v2
https://arxiv.org/abs/1901.11373

Multi-task
fine-tuning

Fine-tune jointly on related task
Language Model is a good choice (even w/o
pre-train)

Led to improvement in multiple target tasks
(Liu et al., 2019, Wang et al., 2019)



https://arxiv.org/abs/1901.11504
https://www.aclweb.org/anthology/P19-1439

Semi-supervised
learning

- More consistent predictions by
perturbing unlabelled examples
- E.g. noise, masking or
data-augmentation




Ensembling

An ensemble of models

- Different hyper-params
- Different pre-trained models
- Different target-tasks




Distilling

- Large model distilled
into a small model

- Distilled model is a
lot simpler

(Tang et al., 2019)




Numbers of Parameters (in Millions)
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Carbon

Date of Energy footprint
original consumption (Ibs of Cloud compute cost
paper (kWh) CO02e) (UsSD)
Extremes
(65M Jun, 2017 27 26 $41-$140
parameters)
Transformer
(213M Jun, 2017 201 192 $289-$981
parameters)
ELMo Feb, 2018 275 262 $433-$1,472
BERT(110M (¢ 2018 1,507 1438 [$3751-612,571
parameters)
Transformer
(213M
parameters) Jan, 2019 656,347 626,155  $942,973-$3,201,722
w/ neural
architecture
search
GPT-2 Feb, 2019 - - $12,902-$43,008

GPT3 - Estimated 4,600,000 USD



Downstream
Applications

- Hubs (“blackbox”)
- Checkpoints
- Third party library



Applications
for us

- Routing issues for municipalities or companies
- Data Understanding

- Sentiment

- Keywords

- Tagging

- Severity Ranking
- & much more



Final Words

There exists no “magic wand”
Be knowledgeable
Never forget baselines
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Do you have any questions?
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CREDITS: This presentation template was created by Slidesgo, including icons by
Flaticon, and infographics & images by Freepik and illustrations by Stories


http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

Live Example

Transformer on Swedish: Colaboratory (google.com)



https://colab.research.google.com/drive/1nwYHHdYfahWVOhXnHZSsBsQgJcTAmY_h#scrollTo=RtRy8tJFXe7C

