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De-mystifying something a lot 
are afraid of

Illustration by Freepik Stories

https://stories.freepik.com/technology
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What Is Possible?

DOG
NOT DOG



How is this 
possible?



It’s all 
statistics

Complex words, simple idea
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The most popular activation 
function of Neural Networks

Example: Rectified Linear Unit (ReLU)
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Machine Learning

Deep Learning



So, what 
makes what?







More about 
Neural 
Networks
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Random initiation



Standard
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Random initiation



TransferL
earning

02

Actually remembering things

Illustration by Freepik Stories

https://stories.freepik.com/technology


Reasons to use 
Transfer Learning
● Low-resource tasks
● Improve performance
● Reduce training-time



Transfer 
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Transfer 
Learning
Take a pre-trained network
Fine-tune



Practical 
end-result



In practice, transfer learning has often been shown to achieve similar 
performance compared to a non-pretrained model with 10x fewer 
examples (Howard and Ruder, 2018).

Error %



paperswithcode.com

https://paperswithcode.com/
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Major Themes 
(NLP)



Major 
Themes 
(NLP)

Language Models 
Pre-training

Shallow to Deep Pretraining vs 
Target Task

Words to 
Word-In-Context



Context matters!
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I think this is a very good movie



Context matters!

Words to 
words-in-context

I don’t think this is a very good movie



Understand a language
Contextual Representations
Versatile

Language Model 
(LM) pretraining
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Understand a language
Contextual Representations
Versatile

Language Model 
(LM) pretraining

I think this is a very [MASK] movie



Quickly models have grown deeper.

2016: 2-3 layers

Shallow to Deep



Quickly models have grown deeper.

2016: 2-3 layers
2019: ~60 layers (24 Transformers Blocks, BERT/GPT2)

Shallow to Deep



Pre-training similar to target task

Sentence Representation is not useful for word-level 
predictions, and v.v.

Pretraining vs 
Target Task



How do we use 
“Transfer 
Learning”?



Feature 
Extraction

Fine-Tuning



Feature Extraction
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How to fine-tune?

Freezing

Lower Learning 
Rate

Regularization



Freezing
Fine-tune progressively in time
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Freezing
Fine-tune progressively in time



Lower Learning Rate
Fine-tune: progressively in intensity



lr=0.001

Lower Learning Rate
Fine-tune: progressively in intensity



lr=0.0001 lr=0.001

Lower Learning Rate
Fine-tune: progressively in intensity



Regularization
Fine-tune: progressively vs. a pretrained model



Feature 
Extraction
- Slower
- Space-efficient

- Better for dissimilar tasks

Fine-tuning

Trade-offs: Working with 
pre-trained models



Getting more 
signal



A related task with more data?

1. Fine-tune on related task
2. Fine-tune on target task

Improves if limited data (Phang et al., 
2018)
Improves sample efficiency on target 
task (Yogatama et al., 2019)

Sequential 
adaptation

https://arxiv.org/abs/1811.01088v2
https://arxiv.org/abs/1811.01088v2
https://arxiv.org/abs/1901.11373


Fine-tune jointly on related task
Language Model is a good choice (even w/o 
pre-train)

Led to improvement in multiple target tasks 
(Liu et al., 2019, Wang et al., 2019)

Multi-task 
fine-tuning

https://arxiv.org/abs/1901.11504
https://www.aclweb.org/anthology/P19-1439


- More consistent predictions by 
perturbing unlabelled examples

- E.g. noise, masking or 
data-augmentation

Semi-supervised 
learning



An ensemble of models

- Different hyper-params
- Different pre-trained models
- Different target-tasks

Ensembling



- Large model distilled 
into a small model

- Distilled model is a 
lot simpler

(Tang et al., 2019)

Distilling





Extremes

GPT3 - Estimated 4,600,000 USD



Downstream 
Applications

- Hubs (“blackbox”)
- Checkpoints
- Third party library



Applications 
for us

- Routing issues for municipalities or companies
- Data Understanding

- Sentiment 
- Keywords
- Tagging
- Severity Ranking

- & much more



There exists no “magic wand”
Be knowledgeable
Never forget baselines

Final Words



CREDITS: This presentation template was created by Slidesgo, including icons by 
Flaticon, and infographics & images by Freepik and illustrations by Stories

Thanks!
hampus.londogard@afry.com

+46 733 673 179

Do you have any questions?

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr


Transformer on Swedish: Colaboratory (google.com)

Live Example

https://colab.research.google.com/drive/1nwYHHdYfahWVOhXnHZSsBsQgJcTAmY_h#scrollTo=RtRy8tJFXe7C

