AFRY

AF POYRY

KNOWLEDGE
DISTILLATION

Strike balance between efficiency & performance

Hampus Londdgard

TABLE OF CONTENTS
|

TRANSFORMERS

What are they? Why
should | care?

|7

y

KNOWLEDGE DISTILLATION

What is knowledge
distillation?

EFFICIENCY

Utilizing hardware better

Practical

QUANTIZATION

What is quantization?

RECAP

What have we learned?

1) STRANSFORMER

What are they?

1 - Semi-supervised training on large amounts
of text (books, wikipedia..etc).

Model:
BERT

Dataset:

Predict the masked word

Objective: (langauge modeling)

TRANSFORMERS

- Large Language Models
- Trained on massive data

blog.londogard.com/transformers-explained

https://blog.londogard.com/nlp/deep-learning/2021/02/18/transformers-explained.html

2 - Supervised training on a specific task with a
labeled dataset.

Supervised Learning Step

|

I Model:
(pre-trained
I in step #1)

I Class

75% | Spam

25% | Not Spam

BERT

Buy these pills Spam
I Dataset: Win cash prizes Spam I
Dear Mr. Atreides, please find attached Not Spam

—_— e e s o o . -

TRANSFORMERS

- Large Language Models
- Trained on massive data

- Easily fine-tuned
- Little data enough

blog.londogard.com/transformers-explained

https://blog.londogard.com/nlp/deep-learning/2021/02/18/transformers-explained.html

1 - Semi-supervised training on large amounts
of text (books, wikipedia..etc).

The model is trained on a
patterns in language. By t

Semi-supervised Learning Step

Model:
CJ BERT
Dataset: r
WikeEniA
Objective: Predict the masked word

(langauge modeling)

2 - Supervised training on a specific task with a
labeled dataset.

Supervised Learning Step

Y 75% | Spam
' Classifier
25% | Not Spam

I Model:
(pre-trained
I in step #1)

I Class

Buy these pills Spam

- BERT
<

I Dataset:

Win cash prizes Spam

Dear Mr. Atreides, please find attached Not Spam

 TRANSFORMERS

\ /

Large Language Models
- Trained on massive data

Easily fine-tuned
- Little data enough

Very powerful
- >90 % of all State-of-the-Art

(SotA) today in Text

blog.londogard.com/transformers-explained

https://blog.londogard.com/nlp/deep-learning/2021/02/18/transformers-explained.html

02 it

GPU usually used Scales incredibly
for inference well with data & size

EFFIGIENCY

1,0 l | |
' [0 [
PARAMETER INCREASE

(2018-2019)

p .
AT

10000
(million)

NVIDIA.

5000

OpenAI
2500 y

UNIVERSITY.of WASHINGTON
’ G 4 Google Al AIZ ’ ﬁ ﬁ
A2 OpenAI . e : ~

B WA

=

~ W

SRR

>

“This is stupid and

\
v \
\

wonderful.” @ d
—Hampus Lond6gard O@%

2\ "\
A\ g _\

P

03
QUANTIZATION

REDUCE PRECISION

To reduce the total
layer size.

QUANTIZATION

REDUCE PRECISION

To reduce the total
layer size.

QUANTIZATION

f32 =» int8
~1/4th size
~ 4x faster

< 0.5% performance loss*

(* most of transformers)

https://emojis.wiki/rocket/

How to distill knowledge

KNOWLEDGE DISTILLATION

"Distilling the knowledge in a neural network"
Hinton, Geoffrey et. al 2015

freepik.com

KNOWLEDGE DISTILLATION

MODEL COMPRESSION

Compressing a model
E.g.12 to 6 layers

"Distilling the knowledge in a neural network"
Hinton, Geoffrey et. al 2015

freepik.com

KNOWLEDGE DISTILLATION

MODEL COMPRESSION

Compressing a model
E.g.12 to 6 layers

MODEL CHANGE

Transformer - RNN
(< 1/10th of size)

"Distilling the knowledge in a neural network"
Hinton, Geoffrey et. al 2015

freepik.com

TEACHER: TRANSFORMER

Pre-trained on a large dataset
Available freely on huggingface.co &

PREPARATION

TEACHER: TRANSFORMER

Pre-trained on a large dataset
Available freely on huggingface.co &

TAHGHTASK Hampus Per bori [Skane

Clear task
Dataset ready

Loc och har levererat denna

PREPARATION

model | idag TME

TEACHER: TRANSFORMER

Pre-trained on a large dataset
Available freely on huggingface.co &

TAHGHTASK Hampus Per bori [Skane

Clear task
Dataset ready

PREPARATION

Loc och har levererat denna

model | idag TME

STUDENT ARCHITECTURE
What your end-goal is

Predict based
on context

One-hot labels

word probability

SOFT LABELS

Sometimes ‘Sparse Labels’

Sparse labels
word probability

floydhub.com

End-goal: Gather more
information with less data

Teacher creates Soft Labels

SOFT LABELS

Sometimes ‘Sparse Labels’

One-hot labels
word probability

Sparse labels
word probability

floydhub.com

. ™\

Teacher) ' Toacher | (Teacher
Model }——{ T }——{ Model
(pretrained) . kaining) . (fine-tuned)

. S/

T

4

~

L Training set

WORKFLOW

Teacher
Model
(pretrained)

Teacher
training

|

I

Teacher
Model
(fine-tuned)

Training set

Inference

Transfer set
+ teacher labels

4

the

lazy

dog

WORKFLOW

One-hot labels Sparse labels

The | word probability
the
lquick
cat
2N cake
over
umps to
° over °
° the L4
. °

pe ™\ >

Teacher) Toacher | (Teacher
Model }——{ T }——{ Model
(pretrained) . kaining) . (fine-tuned)

N 4

T

.
L Training set J

J/

—
{ N
b

Inference wn RKFLﬂw
& B /‘ ~ §
Student model Student training Transfer set
+ teacher labels

Let’s code

LOADING A TEACHER MODEL

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer

= AutoTokenizer.from pretrained("bert-large-cased")

Teacher
Model

(pretrained)

model

LOADING A TEACHER MODEL

AutoModelForSequenceClassification.from pretrained("bert-large-cased")

Teacher
Model

(pretrained)

TRAINING A TEACHER MODEL

from transformers import AutoTokenizer, AutoModelForSequenceClassification,

Trainer, TrainingArguments

tokenizer = AutoTokenizer.from pretrained("bert-large-cased")

model = AutoModelForSequenceClassification.from pretrained("bert-large-cased")

Teacher P 2
Model }7 Te«?_lcher
(pretrained) § training

TRAINING A TEACHER MODEL

training args = TrainingArguments (

moan mmoan

inserts params like batch-size, weight-decay etc

Teacher) (
Model %{ Teachof
(pretrained)) L fERining

TRAINING A TEACHER MODEL

trainer = Trainer (model, training args, train dataset, test dataset)

Teacher) (
Model %{ Teachof
(pretrained)) L fERining

TRAINING A TEACHER MODEL

trainer.train ()

trainer.evaluate ()

Teacher) (
Model %{ Teachof
(pretrained)) L fERining

TRAINING A TEACHER MODEL

from transformers import AutoTokenizer, AutoModelForSequenceClassification,

Trainer, TrainingArguments

tokenizer = AutoTokenizer.from pretrained("bert-large-cased")
model = AutoModelForSequenceClassification.from pretrained("bert-large-cased")
training args = TrainingArguments (

moan

inserts params like batch-size, weight-decay etc ..."""

trainer = Trainer (model, training args, train dataset, test dataset)

trainer.train ()

trainer.evaluate ()

Teacher D 2
Model }7 Teacher
(pretrained) | training

TRAINING A TEACHER MODEL

from transformers import AutoTokenizer, AutoModelForSequenceClassification,

Trainer, TrainingArguments
tokenizer = AutoTokenizer.from pretrained("bert-large-cased")
model = AutoModelForSequenceClassification.from pretrained("bert-large-cased")

training args = TrainingArguments (

moan mmoan

inserts params like batch-size, weight-decay etc

trainer = Trainer (model, training args, train dataset, test dataset)

trainer.train ()

trainer.evaluate ()

Teacher . (Teschei ‘ Teacher
Model }7 et ~7 Model
(pretrained) ‘ fERining v . (fine-tuned)

CREATING TRANSFER SET

preds = trainer.predict (dataset) # Batch predictions 4—

Teacher ' Teacher ' Teacher
Model - i }7{ Model
pretrained 9 (fine-tuned)

Inference

|

Transfer set
+ teacher labels

CREATING TRANSFER SET

pandas dataset[['label 1','label 2']] = preds.predictions 4—'—

Teacher ' Teacher ' Teacher
Model - i }7{ Model
pretrained 9 (fine-tuned)

Inference

|

Transfer set
+ teacher lan. '

CREATING TRANSFER SET

preds = trainer.predict(dataset) # Batch predictions 4-—-

pandas dataset[['label 1','label 2']] = preds.predictions 4———

Sparse labels
word probability

CREATING TRANSFER SET

def make teacher labels(dataset: Dataset, trainer: Trainer):
preds = trainer.predict (dataset) # Batch predictions

pandas_dataset = dataset.to pandas/()

pandas dataset[['label 1','label 2']] = preds.predictions

Teacher '
Model }7{
pretrained

return dataset.from pandas (pandas_ dataset)

Teacher. }7 Tﬁgr
training (fine-tuned)

Inference

|

Transfer set
+ teacher lan. ' ‘

TRAINING STUDENT

Teacher ' Toactes ' Teacher
Model }7{ i }7{ Model
pretrained 9 (fine-tuned)

Won’t go into details.

Inference

| a
Student model H Student training H +-[;22:£?Taiet'

IMPROVING SIGNALS

IMPROVING SIGNALS

Classic: More data

‘ Training set

This time through Data Augmentation via Teacher | Data

augmentation e
——— | Transfer set
(Tang et al.) - +original labels

AUGMENTING DATA

1: Mask Random Words

I enjoy pizza = | [MASK] pizza

AUGMENTING DATA

def make sample (input sentence, pos dict, p mask=0.1):
sentence = []
for word in input sentence:

X = random.uniform/()

1: Mask Random Words

I enjoy pizza = | [MASK] pizza

AUGMENTING DATA

if x < p mask:

sentence.append (mask token)

1: Mask Random Words

I enjoy pizza = | [MASK] pizza

else:

AUGMENTING DATA

sentence.append (word)

1: Mask Random Words

I enjoy pizza = | [MASK] pizza

AUGMENTING DATA

def make sample (input sentence, pos dict, p mask=0.1):
sentence = []
for word in input sentence:
X = random.uniform/()
if x < p mask:
sentence.append (mask token)
else:

sentence.append (word)

2: Replace Word by Equal
POS

Replace one noun with another noun, or
a verb with another verb

AUGMENTING DATA

p pos=0.1):

elif x < (p_mask + p pos):

same pos

sentence

= pos _dict[word.pos]

.append (random.choice (same pos))

2: Replace Word by Equal
POS

Replace one noun with another noun, or
a verb with another verb

AUGMENTING DATA

def make sample (input sentence, pos dict, p mask=0.1, p pos=0.1):
sentence = []
for word in input sentence:
X = random.uniform/()
if x < p mask:
sentence.append (mask token)
elif x < (p_mask + p pos):
same pos = pos_dict[word.pos]
sentence.append (random.choice (same pos))
else:

sentence.append (word)

3: Ngram Sampling

I do enjoy a good pizza— a good pizza
(randomly keep only 1-5 words)

AUGMENTING DATA

1f random.uniform() < p_ ng:

n = random.choice (range (0, 5)) + 1

sentence = sample (sentence, n)

return sentence

p ng=0.25):

3: Ngram Sampling

I do enjoy a good pizza— a good pizza
(randomly keep only 1-5 words)

AUGMENTING DATA

def make sample (input sentence, pos dict, p mask=0.1, p pos=0.1, p ng=0.25):

sentence = []
for word in input sentence:
X = random.uniform/()
if x < p mask:
sentence.append (mask token)
elif x < (p_mask + p pos):
same pos = pos_dict[word.pos]
sentence.append (random.choice (same pos))
else:

sentence.append (word)
1f random.uniform() < p_ ng:
n = random.choice (range (0, 5)) + 1

sentence = sample (sentence, n)

return sentence

1: Mask Random Words

I enjoy pizza— | [MASK] pizza

2: Replace Word by Equal
POS

Replace one noun with another noun, or
a verb with another verb

3: Ngram Sampling

I do enjoy a good pizza — a good pizza
(randomly keep only 1-5 words)

AUGMENTING DATA

if random.uniform() < p ng: # Alt. Mask ngram
n = random.choice (range (0, 5)) + 1
start = random.choice(len(sentence) - n)

for idx in range(start,

sentence[idx] =

return sentence

start + n):

mask token

3: Ngram Sampling

I do enjoy a good pizza— a good pizza
(randomly keep only 1-5 words)

Loop completed

TC

Teacher
Model

Data
augmentatiOn

Student model

Teacher
tramlng

|

Training set

Transfer set

+ original labels

H
| A
H

Teacher
Model
(fine-tuned)

Inference

Transfer set
+ teacher labels |

0.75

0.5

0.25

B spaCy [BERT [distilled spaCy

NLPTOWN

FLOYDHUB

Inference time* (s) Millions of parameters |Accuracy** Max accuracy, 20 runs
BiLSTM Baseline 1.81 5.86| 83.46% + 0.59% 84.40%
BILSTM + MSE w/ teacher labels 1.81] 5.86| 83.97% + 0.52% 84.86%
BILSTM + MSE w/ teacher labels + Augmentation 1.81 5.86| 88.15% * 0.30% 88.88%|
bert-large-uncased 118.88] 335.14] 90.2% * 2.6% 93.12%]|

FLOYDHUB

S+ Augm entation

FLOYDHUB

06 RECAP

Model Compression

&
Model Change

06 RECAP

Model Compression

& Soft Labels
Model Change

06 RECAP

Model Compression

& Soft Labels Data Augmentation
Model Change

DISCUSSION
POINTS

BIAS CEILING

What biases are

- oo
implied? What ceiling exists”

Questions?

hampus.londogard@afry.com

0733673179

CREDITS: This presentation template was
created by Slidesgo, including icons by
Flaticon, and infographics & images by

Freepik.

[November - Presentation] Transfer Learning

How can we transfer knowledge from a base-task into
new specific tasks, achieving SotA results with very
little data?

(stream)

[December - Workshop] Transformers in Visual
Recoginition

How can we use Transformers to find objects in
images, even if the Transformer isn't hand-curated for
vision?

(stream, notebook, code)

February - Workshop] Self-Attention & Transformers
from scratch
How does the Transformer work under the hood? What

makes them so powerful and why do they scale so
well?

(stream, blog/notebook)

https://web.microsoftstream.com/video/01aa344e-5a2c-4046-9ef3-5705034c414d
https://web.microsoftstream.com/video/b7c32003-ad68-434f-abea-ff663b7b80ab
https://colab.research.google.com/drive/1B2abGwDH87vWcvryU1AQHEd3wfG9-1v9?usp=sharing
https://github.com/afry-south/nlp-competence/tree/master/python/20201214%20-%20%239%20%5BImage%20To%20Text%20Copy%20Paste%5D
https://afonline-my.sharepoint.com/:v:/g/personal/hampus_londogard_afconsult_com/ERy4uMekEMVHmCwWXi7n_d8BA72AEcppLdo198OwM1TSpQ
https://blog.londogard.com/nlp/deep-learning/2021/02/18/transformers-explained.html

